Abelian Sandpiles: An Overview and Results on Certain Transitive Graphs

A.A. Jarai

2012, v.18, №1, 111-156


We review the Majumdar - Dhar bijection between recurrent states of the Abelian sandpile model and spanning trees. We generalize earlier results of Athreya and Jarai on the infinite volume limit of the stationary distribution of the sandpile model on $Z^d$, $d \ge 2$, to a large class of graphs. This includes: (i) graphs on which the wired spanning forest is connected and has one end; (ii) transitive graphs with volume growth at least $c n^5$ on which all bounded harmonic functions are constant. We also extend a result of Maes, Redig and Saada on the stationary distribution of sandpiles on infinite regular trees, to arbitrary exhaustions.

Keywords: Abelian sandpile,burning algorithm,uniform spanning forest,infinite volume limit,transitive graph,bounded harmonic function


Please log in or register to leave a comment

There are no comments yet