Path Decomposition of a Spectrally Negative L\'evy Process, and Local Time of a Diffusion in This Environment
G. Vechambre
2018, v.24, Issue 4, 563-668
ABSTRACT
We study the convergence in distribution of the supremum of the local time and of the favorite site for a transient diffusion in a spectrally negative L\'evy potential. To do so, we study the $h$-valleys of a spectrally negative L\'evy process, and we prove in particular that the renormalized sequence of the $h$-minima converges to the jumping times sequence of a standard Poisson process.
Keywords: diffusion, random potential, Levy process, renewal process, local time
COMMENTS
Please log in or register to leave a comment