Universality for Critical Lines in Ising, Vertex and Dimer Models

#### V. Mastropietro

2021, v.27, Issue 4, 687-706

ABSTRACT

In planar lattice statistical mechanics models like coupled

Ising with quartic interactions, vertex and dimer models, the exponents depen

d

on all the Hamiltonian details. This corresponds, in the Renormalization Grou

p language,

to a line of fixed points. A form of universality is expected to hold, implyi

ng that

all the exponents can be expressed by exact ``Kadanoff'' relations in terms o

f a single one of them.

This conjecture has been recently established and we review

here the key steps of the proof,

obtained by rigorous Renormalization Group methods and valid irrespectively o

n the

solvability of the model. The exponents are expressed by

convergent series in the coupling and, thanks to a set of cancellations due t

o emerging chiral symmetries, the extended scaling relations are proven to b

e true.

%Anomalies cancel out in the Standatd model at a perturbative level,,

%provided that the cut-off are removed. The Standard Model is presumably emer

ging from %some more fundamental theory, so it is natural to ask if the cance

llation is valid at a non %pertyrvatie level and

%when some symmetry is vioated,

but is this camcellation

%present at a non-perturbative level and with finite cut-off,

%The anomaly cancellation, which almost determines the values of the charges in the Standard Model,

%is a one loop condition and its validity in presence of radiative corrections follows at a perturbative level by the Alder-Bardeen %theorem. We consider an effective electroweak theory for massless fermions

%with quartic

%Fermi interactions. Non-perturbative effects are rigorously excluded by the absolute convergence of the perturbative expansion %and the domain of anaiticity has a radius

%proportional to the ratio of tbe cut-off and the gause mass.

%The presence of cut-offs breaks local phse symmetry and produce extra terms in the Ward Identities.Nevertheless, using peculiar identities for such extra terms and regularity properties

%we prove that anomaly cancellation condition still hold at the dominnant level, while

%corrections produed by cut-offs are subdominant andcan be rigorously bounded.

Keywords: Universlity, Renormalization Group, Critical exponents

COMMENTS

Please log in or register to leave a comment